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The homogeneous spatial domains of phases on a mesoscopic scale are a charac-

teristic feature of many composite media such as complex fluids or porous materials.

The thermodynamics and bulk properties of such composite media depend often on

the morphology of its constituents, i.e. on the spatial structure of the homogeneous

domains. Therefore, a statistical theory should include morphological descriptors

to characterize the size, shape and connectivity of the aggregating mesophases. We

propose a new model for studying composite media using morphological measures to

describe the homogeneous spatial domains of the constituents. Under rather natural

assumptions a general expression for the Hamiltonian can be given by extending

Widom and Rowlinson’s model for penetrable spheres. The Hamiltonian includes

energy contributions related to the volume, surface area, mean curvature, and Euler

characteristic of the configuration generated by overlapping sets of arbitrary shapes.

A general expression for the free energy of composite media is derived and we find

that the Euler characteristic stabilizes a highly connected bicontinuous structure

resembling the middle-phase in oil-water microemulsions, for instance.
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I. INTRODUCTION

As a rule, the bulk properties of a composite material depend on the chemistry

and on the supramolecular morphology of its constituents. Therefore, the statistical

theory should include geometrical as well as topological descriptors to characterize

the size, shape and connectivity of the aggregating mesophases in such media [1,2].

In this paper we focus on the morphological aspects of two component media by em-

ploying the Minkowski functionals, known from integral geometry [3,4], as suitable

descriptors of spatial patterns. In a d-dimensional ambient space, these functionals

constitute a distinguished family of d + 1 morphological measures which share the

common features of being additive, motion-invariant and continuous. In d = 3 they

are related with familiar measures: covered volume, surface area, integral mean cur-

vature and Euler characteristic.

For completeness we collect in section II some requisites from integral geometry re-

quired to formulate our model. Our approach is an extension of the widely studied

Widom-Rowlinson (WR) model of continuum fluids [5] and may be outlined as fol-

lows:

(i) Each configuration of component (I) is assumed to be the union of mutually

penetrable convex bodies (’grains’) embedded in the host component (II). The form

of the grains is otherwise arbitrary; they may be balls, flat discs, thin sticks etc. A

typical configuration of random distributed discs is shown in Fig. 1.

(ii) The Boltzmann weights are specified by a potential energy which is a linear

combination of Minkowski functionals on the configuration space of the grains.

(iii) The partition function is defined as an integral over the Euclidean motions

of the penetrable grains, weighted by the Boltzmann factor (ii).
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The WR-model only accounts for the volume covered by spherical grains. In a

mean-field approximation it shows a liquid-vapour transition whose existence for

d ≥ 2 has also been established rigorously. In section III the WR-type mean-field

approximation is applied to study the modifications caused by the surface area

and curvature terms on the phase transition in the present model. We concentrate

primarily on the effects due to the Euler characteristicX, which is both a geometrical

and a topological invariant. SinceX is related with the integral Gaussian curvature of

the interface between the mesophases, it measures the bending energy arising from

saddle-splay type interfacial deformations. Moreover, the Euler characteristic has

the attributes of a topological order parameter; configurations with X > 0 consist

typically of isolated grain clusters interdispersed in the host component, whereas

multiply connected aggregates of grains yield X < 0.

II. THE MORPHOLOGICAL MODEL

We consider a two-component medium filling a cube Ω with volume V = Ld.

Component (I) is a collection of penetrable grains represented by compact (i.e.

closed and bounded) convex sets Ki ⊂ IEd , i = 1, . . . , N (see, for instance, the

union of random distributed discs shown in Fig. 1). For simplicity, the grains are

assumed to be congruent bodies. Let G denote the group of motions (translations

and rotations) in the Euclidean space IEd. The location and orientation of the grains

are specified by the action of gi ∈ G on a tripod fixed at the centroid of each grain

K, Ki = giK. Thus, a configuration is given by

KN = ∪Ni=1giK . (1)

The complement Ω \KN constitutes component (II). To avoid finite-size effects we

assume periodic boundary conditions on ∂Ω. In order to introduce morphological

measures, it is convenient to proceed within a more general framework and to con-
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sider the class R of subsets of IEd which can be represented as a finite union of

convex compact sets, with the empty set ∅ ∈ R.

Let us now define three general properties a functional W : R→ IR should pos-

sess in order to be a morphological measure:

(i) Additivity: The functional of the union A ∪B of two domains A,B ∈ R is

the sum of the functional of the single domains subtracted by the intersection

W(A ∪ B) =W(A) +W(B)−W(A ∩ B) . (2)

This relation generalizes the common rule for the addition of the volume of two

domains to the case of a morphological measure. The volume, i.e. the measure of

the double-counted intersection has to be substracted.

(ii) Motion invariance: Let G be the group of motions, namely translations

and rotations in IRd. The transitive action of g ∈ G on a domain A ∈ R is denoted

by gA. Then

W(gA) =W(A) , (3)

i.e. the morphological measure of a domain is independent of its location and orien-

tation in space.

(iii) Continuity: If a sequence of convex sets Kn → K for n → ∞, converges

towards the convex set K (with convergence defined in terms of the Hausdorff metric

for sets), then

W(Kn)→W(K) . (4)

Intuitively, this continuity property expresses the fact that an approximation of a

convex domain by convex polyhedra Kn, for example, also yields an approximation
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of W(K) byW(Kn). We emphasize that we require this condition only for the mor-

phological measure of convex sets K and not for unions A ∈ R.

In three-dimensional space we can give easily examples of morphological mea-

sures which obey the three conditions (i) - (iii): for instance, the volume V and the

surface area S of a domain in three dimensions are continuous, motion-invariant

and additive. In two dimensions we mention the area F and the boundary length U

of a domain as morphological measures in the sense described above. Naturally the

question arises if there are other measures which obey the conditions (i) - (iii) and

if there is a systematic way to find such measures.

A remarkable theorem in integral geometry is the completeness of the Minkowski

functionals [3]. The theorem asserts that any additive, motion-invariant and condi-

tional continuous functional W(A) on subsets A ⊂ IRd , A ∈ R, i.e. each morpho-

logical measure is a linear combination of the d + 1 Minkowski functionals,

W(A) =
d∑
ν=0

cνWν(A) , (5)

with real coefficients cν independent of A. The Minkowski functionals are familiar

geometric quantities. In d=3 we have, for instance,

W0 = V , 3W1 = A , 3W2 = C , 3W3 = 4πX , (6)

with the area A and integral mean curvature C of the surface exposed by a coverage

with volume V and Euler characteristic X. Thus, every morphological measure W

defined by the properties (i) - (iii) can be written in terms of Minkowski functionals

Wν , i.e. the d + 1 Minkowski functionals are the complete set of morphological

measures. The subsequent construction of our model rests on this theorem.

In order to set up a phenomenological model for the statistical morphology of a

Gibbsian ensemble of configurations such as KN in (1), it is natural to adopt the

properties (i)-(iii) as criteria for the choice of a potential energy U(KN ). Then, the

theorem (5) enforces U to take the form
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U(KN ) =
d∑

α=0

εαUα(∪Ni=1giK) , (7)

where we introduced the dimensionless functionals Uα = Wα/wα, with wα = Wα(K)

for a single grain K. We emphasize that the Hamiltonian (7) constitutes the most

general model for composite media assuming additivity of the energy of the homo-

geneous, mesoscopic components.

The configurational partition function is taken to be

Z(T, V,N) =
1

N !ΛNd

∫
exp

{
−βU

(
∪Ni=1giK

)} N∏
j=1

dgj . (8)

The integral denotes averages over the motions of the grains with dg being the

invariant Haar measure on the group G. The translational parts of the integrals are

restricted to the cube Ω. The lenght Λ is a scale of resolution for the translational

degrees of freedom of the grains.

We emphasize, that apart from their convexity, the size and shape of the grains is

not restricted and ’improper’ bodies are not excluded; a δ-dimensional convex set A

with δ ≤ d has Wα(A) = 0 for α ≤ d− δ − 1.

Since the Minkowski functionals are well-defined also for polyhedral bodies, there is

a natural lattice version of our model which preserves its morphological features [6].

Consider for instance a simple cubic lattice where the elementary cells are randomly

occupied by the component (I) and with the configurational inttegral over G replaced

by a sum over occupation numbers. The occupied (closed) cubes may intersect at

common faces, edges or vertices, which are the supports of surface area, mean and

Gaussian curvature, respectively. After setting ε2 = ε3 = 0 one arrives, of course, at

a conventional lattice gas model with nearest-neighbour interaction only.

III. PHASE-DIAGRAMS

Because of the proliferation of multibody potentials an exact evaluation of the

partition function for d ≥ 2 appears to be unmanagable. Therefore, we look for
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an approximation which should keep the geometrical and topological aspects of

the model intact. For this purpose we follow Ref. [5] by keeping only the first two

terms in a high-temperature expansion of the free energy. This procedure amounts

to replacing the configurational integral in the partition function Z by

exp {−β < U >} := exp

{
−β

∫
U(KN)

∏
i

dgi

}
, (9)

which yields a lower bound Z ≤ Z. Here, < U >=
∑

α εα < Uα > is obtained from

the averages < Uα > of the Minkowski functionals over an ensemble of randomly

and independently distributed grains within the cube Ω. In the large volume limit,

N, V → ∞, N/V = n, the averages uα(ρ) :=< Uα > /N are known exactly [2,7]

and are given for d = 3 (considered exclusively from now on) by

u0(ρ) = v̄/v = (1− e−ρ) /ρ ,

u1(ρ) = ā/a = e−ρ ,

u2(ρ) = c̄/c =
(

1− π2

32
a2

cv
ρ
)
e−ρ ,

u3(ρ) = χ̄ =
(

1− 1
4π

ac
v
ρ+ π

384
a3

v2 ρ
2
)
e−ρ

(10)

with the notations < V >= v̄N , < A >= āN , < C >= c̄N and < X >= χ̄N ;

furthermore, v, a and c denote volume, area and mean curvature of a single grain;

finally, ρ = n v. The approximate free energy per grain,

lim
N,V→∞

1

N
βF (T, V,N) = − lim

N,V→∞

1

N
logZ =: f(ρ, T ) , (11)

may be written as

ρ f(ρ, T ) = β0(1− e
−ρ) +

(
f1ρ− f2ρ

2 + f3ρ
3
)
e−ρ + ρ log(ρλ3) (12)

where βα = εα/kBT , λ3 = Λ3/(ev) and

f1 = β1 + β2 + β3 ,

f2 = 3π2

32
Φ1β2 + 3Φ2β3 ,

f3 = 3π2

32
Φ3β3 .

(13)
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The shape of the grains appears in the free energy in terms of the coefficients

Φ1 =
a2

3vc
, Φ2 =

ac

12πv
, Φ3 =

a3

36πv2
. (14)

For three-dimensional convex bodies these coefficients are bounded from below by

the Minkowski inequalities Φj ≥ 1 , j = 1, 2, 3 , with the equality holding in the

case of spheres. The expression (11) for the free energy of a composite media in

terms of morphological measures of the constituents is our main result. A general

discussion of phase behavior in such media is now possible. Furthermore, it may

be interesting to compare Eq. (11) with experimental data of systems where the

conditions (2)-(4) are fullfilled.

We now look for phase transitions signalized by the occurrence of critical points.

Within the present approximation, the values of ρc and Tc are found by solving

∂p

∂ρ
= 0 =

∂2p

∂ρ2
,

∂3p

∂ρ3

∣∣∣∣
ρc,Tc

> 0 , (15)

with the pressure

pv = ρ2∂f

∂ρ
. (16)

For a generic set of parameters in the free energy, ∂2p/∂ρ2 = 0 yields a fourth-order

polynomial equation for the possible values of the critical density ρc. Consequently,

we expect to find in general two critical points. However, let us first consider some

special choices for these parameters.

The choice εα = 0, α ≥ 1, leads back to the original Widom-Rowlinson model with

f(ρ, T ) = β0

(
1− e−ρ

)
/ρ + log(ρλ3) , (17)

having a single critical point at ρc = vnc = 1, kBTc = ε/e. We note that these

values are independent of the grain shape which enters only in the expected mean

curvature u2 = c̄/c and Euler characteristic u3 = χ̄; in the example of spheres one

has u2(ρc) = (1 − 3π2/32)/e ≈ 0.03 and χ̄(ρc) = −(2 − 3π2/32)/e ≈ −0.39. The
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dashed line shown in Fig. 2 indicates the location of the coexisting densities.

In the case ε0 = ε2 = ε3 = 0 the configurational energy is determined by the exposed

area which may be viewed as a continuum analog of Peierls contours of an Ising

lattice model. The free energy simplifies to

f(ρ, T ) = β1e
−ρ + log(ρλ3) . (18)

There is a single critical point ρ+
c = 2 +

√
2, kBT+

c = ε1ρ
+
c (ρ+

c − 2)e−ρ
+
c for ε > 0,

with χ̄(ρ+
c ) ≈ 0.05, and another one, ρ−c = 2−

√
2, kBT−c = |ε1|ρ−c (2− ρ−c )e−ρ

−
c for

ε < 0, with χ̄(ρ−c ) ≈ −0.24.

For two-dimensional grains with v = 0 the free energy reduces to

f(n, T ) = β0 + f1 + φ2n+ φ3n
2 + log

(
nΛ3/e

)
(19)

where φj = fj(v = 1) , j = 2, 3 , and p = n2∂f/∂n. A critical point occurs

at nc = φ2/6φ3, kBTc = 6φ3n
2
c . Consider, for instance, two-dimensional discs with

radius r. The area and the mean curvature are obtained from those of a cylinder,

a = 2πr2(1 + h/r) , c = π2r(1 + h/πr) , when h → 0. In addition, we set ε2 = 0

to focus on the Euler characteristic; then nc = 16c/(πa)2 = 4/(π2r3) , kBTc = 2ε3

and χ̄(nc) = 1− 10c2/(3π3a) = −2/3.

The three particular examples (17) - (19) of the general expression (11) for the

free energy exhibit only one critical point, i.e. one two-phase coexistence. Our main

result is the existence of a second critical point and a three-phase coexistence, i.e. a

triple point for a nonvanishing term ε3 6= 0. A typical phase diagram for penetrable

spheres is shown in Fig. 2. The topology of the phase diagram changes qualitatively

if the Hamiltonian contains a term proportional to the Euler characteristic X of the

configuration. The stabilized middle phase is characterized by a negative mean Euler

characteristic χ̄ < 0 indicating a highly connected bicontinuous structure between

the densities of the critical points. This resembles, for instance, the experimentally
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observed phase behaviour and spatial structure of a middle phase microemulsion.

The temperature of the triple line can tend to zero yielding two seperated two phase

regions with a phase at medium densities even at T = 0.

In this paper we derived a general expression for the free energy of composite

media in terms of morphological measures of the constituents. We introduced pen-

etrable grains to describe the homogeneous spatial domains of the constituents and

we applied integral geometry in order to propose a potential energy of the configu-

rations. The thermodynamics of such composite materials are then given in terms

of additive, morphological measures of its constituents. Depending on the relative

strength of the energies related to the volume, surface area, mean curvature, and

Euler characteristic of the domains we find qualitative different phase diagrams and

spatial structures. Monte-Carlo simulations of the model and also applications to

colloidal systems are work in progress.
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Figure captions

Fig.1:

Composite media such as porous materials and complex fluids can be modelled by

overlapping balls distributed uniformly in space.

Fig.2:

A typical phase diagrams for penetrable spheres in three dimensions: the dashed

line indicates the two-phase coexistence region of the Widom-Rowlinson model with

ε0 = 1, ε1 = ε2 = ε3 = 0. The solid lines show the influence of the Euler characteristic,

i.e. the two-phase region for ε0 = 1, ε1 = 0, ε2 = 0.4, and ε3 = 0.83. Two critical

points occur at ρ
(1)
c = 0.27, kBT

(1)
c = 1.04 and ρ

(2)
c = 3.72, kBT

(2)
c = 0.79. and a

triple line at kBTtr = 0.066 where three phases are in thermodynamic equilibrium.

The middle phase at < W0 > /V ≈ 0.75 is stabilized by the Euler characteristic χ

in the Hamiltonian (7), i.e., highly connected configurations get a large Boltzmann

factor.
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FIGURES

Fig. 1
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Fig. 2
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